海通证券:算力需求快速增长 AI服务器量价齐升

作者: 智通财经 李佛 2023-05-17 09:09:33
随着 GPU 向 A100 向 H100 升级迭代,AI 服务器有望迎来量价齐升。

智通财经APP获悉,海通证券发布研究报告称,根据英伟达官网,相较于前代 A100,H100 综合计算性能提高 6 倍,得益于:1)采用第四代 Tensor Core 和具有 FP8 精度的 Transformer 引擎,持续优化大模型训练和推理表现;2)升级第四代 NVLink,提供高达 900 GB/s 的 GPU 与 GPU之间互连;3)更高的显存带宽。随着价格更高的 H100 在今年陆续出货,AI 服务器市场将在今年迎来持续量价齐升。

▍海通证券主要观点如下:

AI 模型复杂度快速提升,拉动算力需求快速增长。

AI 模型从最早 2012 年(AlexNet)问世以来,深度和广度一直在逐级扩升。作为目前最大的语言模型之一,2020 年发布的 GPT-3 使用了 1750 亿个参数,是其前代的 100 多倍,微软和英伟达共同开发的 Megatron-Turing-NLG 模型参数量则达 5300 亿。

据中国信通院撰写的《中国算力发展指数白皮书》,过去 10 年用于 AI 训练模型的计算资源激增,AI 训练的计算复杂度每年猛增 10 倍,人工智能计算已成为主流的计算形态,全球智能算力规模(换算为 FP32)将由 2021 年 232EFlops 快速增长至 2030 年的 52.5ZFlops,期间 CAGR 超过 80%。

TrendForce 预计 2026 年全球 AI 服务器出货量约 20 万台。

TrendForce 表示,在 AIGC、自动驾驶、AloT、边缘计算等新兴应用带动下,诸多大型云厂商加大AI 相关基础设施建设,预计搭载 GPGPU(General Purpose GPU)的 AI 服务器 2022 年出货量仅占整体服务器市场的 1%,并有望在 2026 年增长至 20 万台,2022-2026 年 CAGR 为 10.8%。

据 TrendForce 统计,2022 年 AI 服务器采购占比以北美四大云厂商为主,微软、Google、Meta、AWS 合计贡献 66.2%,国内则以字节跳动投入最为积极,占比 6.2%。

不同类型的服务器成本结构存在差异,芯片成本占比随服务器性能提升而升高。

服务器本质是计算机,核心硬件包括 CPU、以 GPU 为代表的加速卡、内存、硬盘、网卡、电源、主板等。其中以 CPU 和 GPU 为代表的算力芯片是服务器主要成本项,占比随着服务器性能的提高而逐渐上升。

综合华经情报网和 ARK数据,芯片成本在普通服务器中约占总成本的 32%,而用于机器学习的服务器因通常搭载多卡高性能 GPU 导致芯片成本占比迅速提升至 83%。

AI 服务器和普通服务器之间的区别在于其硬件配置和使用方式。

AI 服务器用于处理深度学习工作负载的海量数据,包括需要大内存容量、高带宽和整体系统内缓存一致性的训练和推断。相较于普通服务器,AI 服务器新增多张高性能加速器(绝大部分为 GPU),拥有更高的计算能力、更快的处理速度和更大的存储空间,以支持高负载和复杂的计算任务。

随着 GPU 向 A100 向 H100 升级迭代,AI 服务器有望迎来量价齐升。

根据英伟达官网,相较于前代 A100,H100 综合计算性能提高 6 倍,得益于:1)采用第四代 Tensor Core 和具有 FP8 精度的 Transformer 引擎,持续优化大模型训练和推理表现;2)升级第四代 NVLink,提供高达 900 GB/s 的 GPU 与 GPU之间互连;3)更高的显存带宽。

该行认为,随着价格更高的 H100 在今年陆续出货,AI 服务器市场将在今年迎来持续量价齐升。

风险提示:

AI 技术进展不及预期、国产替代不及预期。

智通声明:本内容为作者独立观点,不代表智通财经立场。未经允许不得转载,文中内容仅供参考,不作为实际操作建议,交易风险自担。更多最新最全港美股资讯,请点击下载智通财经App
分享
微信
分享
QQ
分享
微博
收藏